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Outline

* Hardware infrastructure
 Distributed systems infrastructure:
— Scheduling system
- GFS
— BigTable

— MapReduce

* Challenges and Future Directions
— Infrastructure that spans all datacenters
— More automation




Sample Problem Domains

« Offline batch jobs

— Large datasets (PBs), bulk reads/writes (MB chunks)
— Short outages acceptable
— Web indexing, log processing, satellite imagery, etc.

* Online applications
— Smaller datasets (TBs), small reads/writes small (KBs)
— Outages immediately visible to users, low latency vital
— Web search, Orkut, GMail, Google Docs, etc.

* Many areas: IR, machine learning, image/video
processing, NLP, machine translation, ... Google




Typical New Engineer

e Never seen a
petabyte of data

e Never used a
thousand machines

* Never really
experienced machine
failure

Our software has to make them successful.
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Google’s Hardware Philosophy

Truckloads of low-cost machines
Workloads are large and easily parallelized
Care about perf/$, not absolute machine perf
Even reliable hardware fails at our scale

Many datacenters, all around the world
— Intra-DC bandwidth >> Inter-DC bandwidth

— Speed of light has remained fixed in last 10 yrs :)
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Effects of Hardware Philosophy

e Software must
tolerate failure

* Application’s
particular machine
should not matter

- just 2 or 3 flavors

Google - 1999

Google




Current Design

In-house rack design

PC-class
motherboards

Low-end storage and
networking hardware

Linux
+ In-house software




The Joys of Real Hardware

Typical first year for a new cluster:

~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)

~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)

~5 racks go wonky (40-80 machines see 50% packet loss)

~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)

~3 router failures (have to immediately pull traffic for an hour)

~dozens of minor 30-second blips for dns

~1000 individual machine failures

~thousands of hard drive failures

slow disks, bad memory, misconfigured machines, flaky machines, etc.

Google
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File Storage: GFS
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« Master: Manages file metadata

* Chunkserver: Manages 64MB file chunks

* Clients talk to master to open and find files
 Clients talk directly to chunkservers for data

Client

Client

Google




GFS Usage

« 200+ GFS clusters
 Managed by an internal service team

» Largest clusters
— 5000+ machines
— 5+ PB of disk usage
— 10000+ clients




Data Storage: BigTable

What is 1t, really?

e 10-ft view: Row &
column abstraction for
storing data

» Reality: Distributed,
persistent, multi-level
sorted map




BigTable Data Model

* Multi-dimensional sparse sorted map
(row, column, timestamp) => value
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BigTable Data Model

* Multi-dimensional sparse sorted map
(row, column, timestamp) => value

“‘contents:” Columns

Rows

“‘www.cnn.com” —

Tilénestamps
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Bigtable System Structure
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Bigtable System Structure

performs metadata ops +
load balancing

serves data serves data

Cluster scheduling system GFS

handles failover, monitoring  holds tablet data, logs

read/write Open()

v

serves data

Lock servic

holds metadata,
handles master-election
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Some BigTable Features

Single-row transactions: easy to do read/modify/write
operations

Locality groups: segregate columns into different files
In-memory columns: random access to small items
Suite of compression techniques: per-locality group
Bloom filters: avoid seeks for non-existent data

Replication: eventual-consistency replication across
datacenters, between multiple BigTable serving setups
(master/slave & multi-master)

Google




BigTable Usage

« 500+ BigTable cells

» Largest cells manage 6000TB+ of data,
3000+ machines

» Busiest cells sustain >500000+ ops/

second 24 hours/day, and peak much
higher




Data Processing: MapReduce

Google’s batch processing tool of choice
Users write two functions:

— Map: Produces (key, value) pairs from input

— Reduce: Merges (key, value) pairs from Map
Library handles data transfer and failures

Used everywhere: Earth, News, Analytics,
Search Quality, Indexing, ...




Example: Document Indexing

 Input: Set of documents
 Map

— Parse document D into terms
— Produces (key, value) pairs

* Reduce
— Receives list of (key, value) pairs for term

— Emits single (key, value) pair




MapReduce Execution

MapReduce

EEEEEEEEEE .

Shuffle and Sort

——,7
Reduce task1 . Reduce task 2

reduce reduce

GFS

Google




MapReduce Tricks / Features

Data locality « Backup copies of tasks
Multiple I/O data types * # tasks >> # machines
Data compression * Task re-execution on failure
Pipelined shuffle stage * Local or cluster execution

Fast sorter * Distributed counters

Google




MapReduce Programs in Google’s Source Tree
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New MapReduce Programs Per Month
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MapReduce in Google

Easy to use. Library hides complexity.

Number of jobs

Average time (seconds)
Machine years used
Input data read (TB)
Intermediate data (TB)
Output data written (TB)

Average worker machines

Mar, ‘05 Mar, ‘06

72K

934
981
12,571
2,756
941
232

171K

874
2,002
52,254
6,743
2,970
268

Sep, '07
2,217K
395
11,081
403,152
34,774
14,018
394
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Current Work

Scheduling system + GFS + BigTable + MapReduce work
well within single clusters

Many separate instances in different data centers
— Tools on top deal with cross-cluster issues

— Each tool solves relatively narrow problem
— Many tools => lots of complexity

Can next generation infrastructure do more”?




Next Generation Infrastructure

Truly global systems to span all our datacenters

» Global namespace with many replicas of data worldwide
» Support both consistent and inconsistent operations

« Continued operation even with datacenter partitions

» Users specify high-level desires:
“99%ile latency for accessing this data should be <560ms”
“Store this data on at least 2 disks in EU, 2 in U.S. & 1 in Asia”

— Increased utilization through automation
— Automatic migration, growing and shrinking of services
— Lower end-user latency

— Provide high-level programming model for data-intensive
Interactive services

Google




Questions?

Further info:

* The Google File System, Sanjay Ghemawat, Howard Gobioff, Shun-Tak
Leung, SOSP ‘03.

» Web Search for a Planet: The Google Cluster Architecture, Luiz Andre
Barroso, Jeffrey Dean, Urs Holzle, IEEE Micro, 2003.

* Bigtable: A Distributed Storage System for Structured Data, Fay Chang,
Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber, OSDI'06

* MapReduce: Simplified Data Processing on Large Clusters, Jeffrey Dean and
Sanjay Ghemawat, OSDI’04

e Failure Trends in a Large Disk Drive Population, Eduardo Pinheiro, Wolf-
Dietrich Weber and Luiz André Barroso. FAST, ‘07.
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